Electromagnetic characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly Parides sesostris.
نویسندگان
چکیده
We have used three-dimensional stereolithography to synthetically replicate the gyroid photonic crystal (PC) structure that occurs naturally in the butterfly Parides sesostris. We have experimentally characterized the transmission response of this structure in the microwave regime at two azimuthal angles (ϕ) over a comprehensive range of polar angles (θ). We have modelled its electromagnetic response using the finite-element method (FEM) and found excellent agreement with experimental data. Both theory and experiment show a single relatively broad transmission minimum at normal incidence (θ = 0°) that comprises several narrow band resonances which separate into clearly identifiable stop-bands at higher polar angles. We have identified the specific effective geometric planes within the crystal, and their associated periodicities that give rise to each of these stop-bands. Through extensive theoretical FEM modelling of the gyroid PC structure, using varying filling fractions of material and air, we have shown that a gyroid PC with material volume fraction of 40 per cent is appropriate for optimizing the reflected bandwidth at normal incidence (for a refractive index contrast of 1.56). This is the same gyroid PC material volume fraction used by the butterfly P. sesostris itself to produce its green structurally coloured appearance. This infers further optimization of this biological PC beyond that of its lattice constant alone.
منابع مشابه
Characterization of a Mechanically Tunable Gyroid Photonic Crystal Inspired by the Butterfly <i>Parides Sesostris</i>
99 wileyonlinelibrary.com C O M M U N IC A IO N geometries. Using the naturally occurring photonic gyroid found in the wing scales of Parides sesostris butterfl ies [ 28 ] as an experimental model system ( Figure 1 ), we employed high-resolution additive manufacturing to replicate its 3D architectural details in a reversibly deformable macro-scale analogue. We specifi cally used a fi lling frac...
متن کاملAlignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at...
متن کاملIridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales.
The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying pho...
متن کاملGyroid cuticular structures in butterfly wing scales: biological photonic crystals
We present a systematic study of the cuticular structure in the butterfly wing scales of some papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi, Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning and transmission electron microscopy (TEM) images, analytical modelling and computer-generated TEM micrographs, we find that t...
متن کاملStructure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Interface focus
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2012